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Creep calculations in support of the Strategic Petroleum

Reserves require the use of an incremental solution with

respect to time. The creep algorithms use a time step supplied

by the user. Larger time steps may give erroneous results even

though the computer solution is stable. This report presents

the theory behind such problems and some examples showing

several different solutions obtained where all circumstances

were identical except the size of the time step.
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1. Introduction

Creep stability calculations are being done on leached salt

caverns for storage of oil under the strategic petroleum

reserves project. Analysis is also continuing on the Waste

Isolation Pilot Plant near Carlsbad, New Mexico. Roth of these

projects require accurate creep displacement analysis of

openings in salt formations. Excessive creep displacement may

result in either gradual closure or sudden failure of openings

in the surrounding salt.

Recent code qualification exercises for ADINA78 [l] have

been concentrated on simulation of triaxial creep tests

performed by Wolfgang Wawersik (5532)[2]; During that exercise

it was observed that some time steps, though resulting in

stable computer solutions, gave erroneous results. The reasons

for this have been investigated and are presented in this

report.

The algorithms for obtaining creep strain along with

displacements and stresses are similar in most of the finite

element programs with creep capability. Even though the time

step difficulties discussed here occurred in ADINA78, other

programs will exhibit the same characteristics.

2. Theory

Among the nonlinear material models available in ADINA78 is

the thermo-elastic-plastic and creep model which allows for

creep strain based on one of three constitutive equations[3].



Calculation of creep strain and the resulting stresses is done

by integrating the strain rate at a given time to give a strain

increment which Tan be used to obtain a stress increment.

The incremental stress vector is calculated from

Ag = gE(Ag - Asp - As' - AgTH) (1)

where CE is the elastic stress-strain matrix and A%, AeP ,

A& rvAzTH are the total, plastic, creep and thermal incremen-

tal strain vectors. The creep model currently does not

consider plastic or thermal strains so Agp and AgTH are

equal to zero. Equation (1) then becomes

Ag = gE (AZ - A$) (2)

The incremental creep strain is determined by multiplication of

a strain hardening parameter and the deviatoric stress as

Ae?.
-17

= KS (3)

where K is the strain hardening parameter and g is the

deviatoric stress. To solve equation (3) for the incremental

creep strain, the strain hardening parameter K must be

calculated. This is done in the following manner.

The current effective stress and.current effective strain

are given in equations (4) and (5) respectively.

O= I2S 1 %
2 ij 'ij

8~ 2,I ‘e ‘%
3 ij ij I

(4)

(5)
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The creep strain constitutive equation has the following form

8 = f(T) (1 - exp(-r(T,t) + g(T)t (6)

where f, r and g are functions of effective stress determined

in the laboratory. The effective strain rate is given by the

time derivative of equation (6)

2 = f(Z) r(Z) exp(-r(Z)t) + g(Z) (7)

Equations (4) and (5) are solved at each time step to give

effective stress and effective creep strain. The two values

are substituted into equation (6) and the time value satisfying

equation (6) is found. This time value is a pseudo time that

can be substituted into equation (7) to obtain the current

creep strain rate. The strain hardening parameter is a

function of the creep strain rate in the following way.

Kc23
2 At/a (8)

Substituting (8) and (3) back into (2) we obtain equation (9)

(9)

Equation (9) can be integrated by an incremental numerical

integration method where

0- n = g(nAt) (10)

and

Tj- =a
-n+l -n + AZ (11)
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The relationship between N and total time is given by

or

T = NAt (12)

At = T/N (13)

where T is the final time, At is time step and N is the total

number of increments. Equation (9) and (10) can be substituted

into equation (11) to obtain

a a  + cE-n+l = -n NN [AEn - (; 8 At/z) s] (14)

The incremental strain is related-to time and strain rate by

AE = Ate (15)

Equation (15) is substituted into equation (14) to give (16)

a-n+l = En + g At  [& - (5 s/++] (16)

The WIPP creep model proposed by Herrmann and Wawersik has

the following form 141

eC = A0 (??)A1 (1  - exp(-A2(c)A3t)  +  A4(a)A5t  (17 )

with the creep strain rate being the first derivative of

equation (17)

gc = t- A5
-AO( a)t- A1 (-A2(ta)A3 exp(-A2(to)A3t)  + A4( a) (18)

where A0 to A5 are laboratory determined constants.

Substituting (13) and (17) into (16) gives the numerical

integral of the WIPP cr,eep equation which is
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a cr-n+l = -n + SE T/N [in - (5 2,':) (-AO(z)AIX

(19)

-A2(z)A3  exp -A2(o)'-3t  +

where E is given by equation (18).

As N goes to infinity (At goes to zero) in equation (19), En+l

converges to zn. But, as N goes to 1, zn+l becomes

a-n + g"T[$ - (; s/??(-AO(??)A1(-A2(a)A3X

(20)

exp(-A2(o) A3t) + A4(5A5

A value of N equal to 1. would give good results if equation

(20) were linear. However, the exponential nature of equation

(20) results in a large error when one time step is used

because a linear approximation is being made of an exponential

equation. To accurately integrate an exponential equation it

must be broken into a number of small linear increments.

3. Examples

A triaxial creep test simulation using ADINA78 was

completed on the finite element mesh shown in figure 1. This

mesh models one quarter of the triaxial test specimen with

symmetry boundary conditions used on the lower and left sides

of the mesh. The analysis was axisymmetric. The nodes across

the top were locked together vertically to simulate a rigid

steel platen. Friction at the salt/steel interface was

simulated by placing concentrated horizontal loads at the
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top nodes. A vertical pressure of 5000 psi was placed across

the top and a horizontal pressure of 2000 psi was placed on the

right side.

At the beginning of each creep calculation the time step

was automatically increased until a time step long enough for

economy but short enough for computer stability was reached.

It was'discovered that time steps just short enough for

computer stability resulted in erroneous calculations. Figure

2 shows the vertical strain versus time for three different

time increment histories. The three curves result from

analyses where no friction forces were applied to the top

nodes. The time increment histories are given on the figure.

The heavy line represents the constitutive equation with stress

set to a constant 3000 psi. Figure 3 shows the vertical strain

versus time when the salt/steel friction is set to .06. The

error in this case is not as large but it still exists.

To further illustrate the effect of time step, the stress

integration equations available in ADINA78 are examined in the

following manner:

a an+l = n + EAt 1
where

E = Young's Modulus

cl = stress

At = time step

& = t o t a l  s t r a i n  _
.
eC = total creep strain

(21)

10



Generally, secondary creep dominates creep displacement so a

common approach is to consider only secondary creep. Equation

(18) is then reauced to

e
C

= A4(;)A5

Substituting (22) into (21) gives

z an+l = n + E A t  e-A4(o)A5
c n 1

(22)

(23)

where

E = 2 x lo6 psi

A4 = 1.6667 x lO-2o

A5 = 4.9

At = t/N

t = 20 days

Note: A4 and A5 are laboratory determined constants for

units in psi and days;

.
When e = 0, equation (23) will model stress relaxation

following a finite instantaneous strain. The approach taken is

to eliminate $ from equation (23) to make simple integration

possible. In figure 4, each point on the curve represents

stress at twenty days with the value of stress being arrived at

by integration of equation (23) over'N increments.

Primary and secondary creep can be analyzed the same way by

substituting all of equation (16) into equation (21) giving

a an+l = n + EAt -Al A3+ A0 an A20n exp(A20n-A3t) - A4:t5] (24 )
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where

E = 2 x lo6 psi

A0 = 5.97 x lo-l1

Al = 2.38

A2 = -1.163 x 10"

A3 = 2.52

A4.= 1.6667 x lO-2o

A5 = 4.9

t = t/N

.t = 20 days

Again the assumption is made that e = 0 as in a stress

relaxation problem. The results of integrating equation 24 are

shown in figure 5.

The important item in figures 4 and 5 is the distinct elbow

on the curve. Below this elbow the number of time steps is not

large enough to correctly approximate the exponential

function. Above the elbow a very flat line exists where

essentially the same value of stress is obtained no matter how

many increments are used. For creep calculations, the number

of increments used should be just beyond the elbow for accuracy

but not too far along the flat portion for economy. It is also

interesting to note that errors due to large time steps will

result in smaller than actual displacements and stresses. This

is obvious in figures 2 and 3 where the erroneous strain curves

were below the correct curve. It is also obvious in figures 4

and 5 where the erroneous stresses to the right of the elbow
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are below the correct stress. This causes concern because

incorrect displacements due to time step problems will always

be non-conservative from a strut-Jral failure point of view.

4. Conclusions

Rock salt creep analysis for structural design of salt

caverns requires an incremental procedure to determine

displacement and stresses. The selected length of the

incremental time step is important for both computational

economy and accurhL:y. A time step that is too long will result

in error since the exponential creep function is being

approximated over a long time step by a linear function. Time

steps that are excessively short will not increase accuracy and

will be uneconomical. There appears to be a critical point in

time step length below which the solution is within the

required accuracy and above which the solution rapidly

deteriorates with increasing time step length.

The error resulting from a time step that is too long

appears to be nonconservative in that displacements and

stresses are smaller than actually occur.
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Figure 1
Finite Element Mesh for Triaxial Creep Test
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Time Step Dependence of Vertical Strain
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ON vs. N For Secondary Creep Only
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ON vs. N for Primary and Secondary Creep
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